Specific heat of the ideal gas obeying the generalized exclusion statistics

نویسنده

  • Takahiro Aoyama
چکیده

We calculate the specific heat of the ideal gas obeying the generalized exclusion statistics (GES) in the continuum model and the tight binding model numerically. In the continuum model of 3-d space, the specific heat increases with statistical parameter at low temperature whereas it decreases with statistical parameter at high temperature. We find that the critical temperature normalized by μf (Fermi energy) is 0.290. The specific heat of 2-d space was known to be independent of g in the continuum model, but it varies with g drastically in the tight-binding model. From its unique behavior, identification of GES particles will be possible from the specific heat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Properties of Generalized Exclusion Statistics

We analytically calculate some thermodynamic quantities of an ideal g-on gas obeying generalized exclusion statistics. We show that the specific heat of a g-on gas (g 6= 0) vanishes linearly in any dimension as T → 0 when the particle number is conserved and exhibits an interesting dual symmetry that relates the particle-statistics at g to the hole-statistics at 1/g at low temperatures. We deri...

متن کامل

Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.

After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a fu...

متن کامل

◎Wond Sdentnc PuЫ ぉhng Compaw GENERALIZED SOMMERFELD THEORY:SPECIFIC HEAT OF A DEGENERATE g-ON GASIN ANY DIIVI ENS10N AND THE GENERALIZED RIEIV IANN ZETA FUNCTION

We generalize the Sommerfeld theory for a metal where the low temperature and high density expansions are known as the Sommerfeld expansions to that for a degenerate gon gas an ideal gas with fractional exclusion (i.e. Haldane-Wu) statistics of 0 ( 9 ( 1 in D dimensions, using the quantum statistical mechanics formulation in the Ddimensional momentum representation, Using the generalized Sommer...

متن کامل

Quantum Statistical Mechanics of Ideal Gas Obeying Fractional Exclusion Statistics: A Systematic Study

The quantum statistical mechanics of an ideal gas with a general free-particle energy obeying fractional exclusion statistics are systematically investigated in arbitrary dimensions. The pressure relations, the relation between pressure and internal energy, the equation of state, as well as the thermodynamic properties are thoroughly discussed. Some novel results are obtained. PACS numbers: 05....

متن کامل

Canonical thermostatics of ideal gas in the frame work of generalized uncertainty principle

The statistical consequences of minimal length supposition are investigated for a canonical ensemble of ideal gas. These effects are encoded in the so-called Generalized Uncertainty Principle (GUP) of the second order. In the frame work of the considered GUP scenario, a unique partition function is obtained by using of two different methods of quantum and classical approaches. It should be noti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000